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Abstract

In the present work, microelastic and macroelastic fields are presented for the case of spherical inclusions embedded
in an infinite microstretch material using the concept of Green’s functions. The Eshelby tensors are obtained for a
spherical inclusion and it is shown that their forms for microelongated, micropolar and the classical cases are the proper
limiting cases of the Eshelby tensors of microstretch materials.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A microcontinuum is considered as the collection of material particles, which can deform independently
in the microscale in addition to the classical bulk deformation of the material. Eringen and Suhubi (1964)
and Suhubi and Eringen (1964) introduced and developed a general theory for this phenomenon which is
called micromorphic continua. As it is known, the general micromorphic theory is very complicated even
for the linear case. To overcome the difficulties, Eringen introduced first the micropolar elasticity (Eringen,
1966) and, then the microstretch elasticity (Eringen, 1990). Because of their well suitability to the nature of
many materials, both theories were universally accepted.
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Although the numbers of the unknown constitutive coefficients in micropolar and microstretch theories
are considerably less than the general case, there are still some undetermined constitutive coefficients. Thus,
we followed a different approach (Inan, 1990) and considered an additional homogenization procedure sim-
ilar to the one known for the composite materials, to evaluate and estimate overall effective material prop-
erties. To apply the usual homogenization techniques (Mori-Tanaka method (Mori and Tanaka, 1973;
Benveniste, 1987), for instance), we need to know the Eshelby tensors which establish the relation between
the strains of the matrix material and of the inclusion. Several problems have been solved by using the
Eshelby’s equivalent inclusion theory (Eshelby, 1957). For the linear theory of the asymmetric elasticity,
some solutions are given by Sandru (1966). Hsieh et al. (1980) and Hsieh (1982) have derived general
formulas for the volume defects in micropolar media. Finally, Cheng and He (1995, 1997) obtained four
Eshelby tensors for the spherical and the circular cylindrical inclusion in an isotropic centrosymmetric
micropolar media, respectively. Sharma and Dasgupta (2002) calculated averaged stress and strains using
numerical versions of the micropolar Eshelby tensors and extended the Mori-Tanaka method to the micro-
polar medium.

In the present work, the fundamental solutions are obtained for the microstretch medium. And then the
Eshelby tensors are obtained for a spherical inclusion and it is shown that the Eshelby tensors for the
microelongated, micropolar and the classical cases are the limiting cases of the Eshelby tensors of micro-
stretch materials.

2. Fundamental solutions

The fundamental solutions for microelongated and micropolar media are given by Kiris and Inan (2005)
and Cheng and He (1995), respectively. Applying a similar method given in Kiris and Inan (2005), we ob-
tain the fundamental solutions and then the Eshelby tensors for microstretch medium.

As it is mentioned in the introduction, microstretch material is defined as the body with non-rigid par-
ticles which may do volume changes and microrotations in addition to the bulk deformation in the micro-
structural level. In other words, the material particles of such a material can stretch and contract
independently of each others translations and rotations.

Since our task is to obtain the Eshelby tensors for the microstretch materials, first we shall obtain the
field equations of the medium. The local forms of the equations of balance of momentum and
moment of momentum at a point of a deformed microstretch body for the static case are given as (Eringen,
1999)

tux + f1=0,
My k + Cimntmn + ll = 07 (1)
mk‘k—l—t—s—&-l:O,

where #;; is the stress tensor, s;; and ni; are the couple stress tensors, m; is the microstretch vector and
t =t S = Sik- f1» [ and [ are the body force, the body moment and the body force densities, respectively.
Subscripts preceded by a comma stand for derivatives with respect to the corresponding spatial coordinates
and €, is the permutation symbol.

The geometrical definitions and relations are given below:

e = Uk + €umPry Vi = sy Vi =30k, e =30. (2)

Here, ¢, is the strain tensor, ¢y is the microrotation vector, 0 is the microelongation and u, is the displace-
ment vector.
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The linearized constitutive equations for a microstretch medium are given by Eringen (1999) as
ty = Ai/Q + Afnkje,m + Aklmngmn + Cklmnymna
my = B;ke + Bfnlkg,m + Cmnlkgmn + Blkmn?mm

(3)
my = Ci0 + C 01 + Ay eim + Bl Vim,
s—1t= CYO + C,i@k +A}i18k1 +B;;1ykl7
where
A5 = 200, A =0, Ay = 20500 + (1 + %) 645, EEAFIFY
ij — 0% kij — ijkl = 40Ok ,u+2 ik /l+ u P il Ok,
ij =0, Biij = boekip Bijk! = aéijékl + Béiléjk + ’/51'/{5/‘1 (4)

CS = /11, C: = 0, Cf] = Cloé,’j, Cijkl =0.

Here 2, u are Lamé constants, «, 8, y and y are new constitutive coefficients due to the micropolar character
of the medium, ay, 49 and A, are some new constitutive coefficients due to the microelongation and they are
given as (Eringen, 1999)

ay = 6t + 67y + 973 + 14 + 275 + 6 + 377 4+ 278 + T9 + 3710 + T11,
Ao =3v+20 -, (5)
A =9t + 61+ 3y.

We substitute the constitutive equations into the balance equations to obtain the fields equations for the
microstretch medium. Thus, we find

(:u + %) Uy + (}v +u— %) U + /IOQJ + Xelkm({bm,k +fl =0,
VP u + (4 B)p s + 1€ smttma — 2yP; + 1, = 0, (6)
aOO,kk — 20— /Ahouk‘k +1=0.

For the Galerkin’s Representation (Galerkin, 1930), it is more convenient to write all seven of Eq. (6) in the
matrix form as

u; fi
U S
us VL
M|¢ | =—|hL|. (7)
¢, I
b5 s
L 0 . L l .

To achieve this, we define first,

0 ,

Os=apd =141, Qa=y4-2y Os=(a+p+7)4-2y
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and then find M as

[0+ (2 +u—2XT  (A+u-XX2  (A+up-HXX; 0 —1Xs 2X> JoX 1 ]
A+u=9X Xy O+ (A+u—4X; (A+p—4XX; 2.6 0 —2X) JoX>
H+u-9x%; (A+p-9X2Xs O+ (A+u—-4X; 72X 72X 0 JoXs
M= 0 —1X3 X2 Os+ (2 +BXT  (2+BIX X, (24 B)X1X5 0
7X3 0 —1Xi (a+ XXy Os+(@+PX: (24 PX2X; 0
—X2 1X1 0 (o + p)X1X5 (e + B)X2 X5 Os+ (a4 B)X3 0
—JoX, —JoX> — o X3 0 0 0 05 |
)
Now, denoting the inverse matrix of M by
M- — () 10
53,00, (10)
where
I’lii:D7(D1—E|2X?)7 i:1,2737
nii:D4(|:|5_|:|6X?73)a i:475767
n; =L 0s, =7,
nsznﬁz —D2D7X,'Xj, l;é], l,]: 1,2,3,
n,-j:nj[:fD4D6X,-,3Xj,3, l?é‘]7 i,j:4,5,6, (11)
ny = —ny = 074X, i=1,2,3,
N4 = Nas = N35 = N4y = N5y = Ne3 = Ny =N =0, 1=4,5,6,
Nis = —Ny = Ny = —hs; = 477X,
nie = —n3 = ngy = —ng = —LLlr X,
Nys = —h35 = ns3 = —hgy = [077.X
and
O = 010304 + /13044
L = [ié + (/1 +u— @03} 04— 2°03,
O3 = 0204 + XZA»
D4=<>1<>3+/1§A, (12)
Us = 0205,
O = [(x+ £)02 — 1],
|:|7 = <>57
Og = O1.
The solution of the matrix equation (7) is written as
Fun san
125 F2
us F3
¢ | =N| L |. (13)
b, Ly
b3 Ls
L 9 - L L -
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Here

N = ()7,
and

O,0,0F = —f, 0O:0,0,L=-1 0O;0,0,L=-1
From Egs. (13) and (14) we find

u=04(0103 + 4 4)e = {204 + [ (24 1 =5) 04 = 2] 03 } V- 0 = 105V x 9" = 105V ™,

¢ = 02050" — [(x+ )02 — XZ] VV-9" —1(0:10: + /1§A)V X @,
0 = 20(0204 + 1 A)V - 9 + 01050™".
Here
¢ =0sF, ¢ =[010s+ Z4IL, 9" = [0204 + AL
and equations for them become
(0103 + /134‘)(0204 + 7 A)p = —f,
0s5(0204 + XZA)(P* =-1
0s(0105 + )™ = —1.

(17)

(18)

Substituting the open forms of the operators given by Eq. (8) into Egs. (16) and (18), we arrive at,

u=(y4 = 20)[(A+2u)A(ap4 — ;V{) + 1A
—{R0a-20)+ [(24+ 0= E)pa - 210+ W] (@4 = 1)}V -0
=2+ B+9)4 =24V x " = Jo[(x + B+ )4 = 27]V™,
. X X X 2 *
¢ = (u+§)A[(a+ﬂ+V)A —2le" — [(cHB)(/HE)A -1 }Vvv
—2[(+2p)A(a0d — Jy) + 25 4]V x o,

0= /loA[(u+§>vA —2ux]V @+ (220 A[(a+ B +7)4 = 27le™

and
(2 +2u) (a0l — 21) + 5] A* [(,u + %)yA - Zux] o = —f,
[+ B+9)4 =22 (n+ )94 = 214] 07 = -1,
[+ B+7)4 =270+ 2) A(ao A — 1) + 23 Al9™ = —L.

In the first step of our formulation we assume 1 =0, /=0 and body force field f as irrotational
write

f = Vn,.

Then from Egs. (16) and (18), we find
(0103 + Ag4) Ao = —Tp.

Here

(0204 + 7 A) = V Ay.

(19)
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Now, solutions for this case are obtained simply as

u = O3V,
¢ =0, (24)
0 = 2V - (VAy).

For the solenoidal force field, we have =, such that
f=V xm. (25)

In the same way, from Eqgs. (16) and (18) we obtain

(<>2<>4 + XzA)A = —TT. (26)
Here

(0103 + 2gA)p = V x A. (27)
Then the solutions become

u=V x (O4A),

¢ =—V x(VxA), (28)

0=0.

In the second step, we assume f = 0, / = 0 and the body moments, 1 are nonzero. Considering an irrotational
field first, we write

1= Vrg. (29)
Then we find

O3y = —m). (30)
Here

(0204 + 1 A)g" = V45 (31)
and the solutions are

u=20,

¢ =V4;, (32)

0=0.
For solenoidal moment field, we take

1=V xzn (33)
and obtain

(0204 + L HA" = —7". (34)
Here

030" =V x A" (35)

and the solutions are
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u=—yV x (VxA"),
$ =V x (024", (36)
0=0.

As the last step, we assume f=0, 1 =0 and / is nonzero. This time we define

030" = A" (37)
Then, from Egs. (16) and (18), we have

(0103 + Agd) Ay = —1. (38)

Thus, the solutions are

u=—iVA;,
¢ =0, (39)
0= 045"

In the following part of this section, we will determine the fundamental solutions for an infinite medium
for a force field q, concentrated at the origin of the coordinate system. Using Helmholtz decomposition,
Egs. (22) and (26) are written as

7

[0+ 20 = (2 2000 — 4] Ao = - v(l),

{ { (40)
Z A 2 . [ _
K”+2)” AW4A 4ﬂqxv<)’
where r = |x|. The solutions are given as
1 q-r h 1 _4
Ay = — LA V(=1 —e/m
0 8nB0( r ) 4nBOq v<r( ¢ )>’ (41)
_ 1 h% q —r/hy
A78nB3VX(qr)+4nB3vx<;(l e )),
where
b
By=(A+2w)i — 2, By= (H + 5)%
By = (A+2pu)ay, Bz =2py, (42)
, B, B
B=p =g
On the other hand, from Egs. (24) and (28), we write
u = (apd — 2)VAg+ (y4 =25V x A,
¢ =—yV x(VxA), (43)

0= 7oV - (VA).

Now, substituting the results of Eq. (41) into Eq. (43), we find the displacement, microrotation and micro-
elongation as
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(2431w — 74 (q)+ a (q)+(i+u)il—i§ ((q~r)r> 3ay ((q-r)r>

8muBy r) " 4nBy \P? 8nuBy P 4B, 7S
_‘m(%iﬂ)&) (ge*r/hl) +%V X V x (ge*r/hl) +i‘£'(2)v X V x (g(l _ efr/hl))
e ¥}V (0 —e) (#4)
¢ = %v x (3 -emy),

o (q-T Lo q
o= () ().
4nBy \ 13 + 4nB, r ©
In the sequel, we will obtain the solutions of the next two steps. Thus, we assume that concentrated body

moment p is acting at the origin of the coordinate frame. This case is represented by Egs. (30) and (34).
Then we write

(4 B4 - 2045 = 499 (1),

r

: { (45)
L\ p2 L :
[(’“L z)M 2”4]1\ BT V(r)‘
The solutions of these equations are
1 1
Af = — . (1 — —r/h3
0 47'EB4 p v (I" ( ¢ )) ’
2 (46)
A= L V x (pr) + i V X (B(l —e”/hz))
8nB; 4nB; r '
Here
By =2y, Bs=o+p+7y, hi=Bs/B,. (47)
On the other hand by combining Egs. (32) and (36), we may write
u=—yV x (VxA"),
* X *
¢ZVAO+(M+§)AV><A, (48)

0=0.

Now substituting the solutions of (46) into Eq. (48) for the second step, we obtain the displacement, micro-
rotation and the microelongation as

u :LV X (I—)(l —e”/”z)),

8mu r
_ (Be*’/’”) BRI VR (B(l —e*’/’”)) +—(2H+X)VXV>< (E(l —e*"/h2)> (49)
4nBs \r 4nB, r 8nB; r ’

0=0.
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Finally we write V/ =1and 1 = pd(x,x,,x3) for the concentrated force density at the origin of the coordi-
nate system. Then from Eq. (38), we find

{(+ 2@ aod? — [(4+ 2u) iy — Z2AYAL = % PV (1) . (50)

.
Solution of this equation is

*k 1 i) T h% = 1 *"/hl
AOsM%<TT>mﬁJ*V<;“e ))- (51)

In the same way, from Eq. (39), we write

u—= —ioVAg*,

¢ =0, (52)
0= (J+2u)AA.

Finally, substituting the expression (51) into Eq. (52), we find the solutions corresponding to the third step;

o [p (pro)r o (P Johi p .

u= 8By [r r 4nB, re + 4nB, VXV X r (1-e ))

¢ =0, (53)
_ (;L + 2!“) p —r/h

0= 7B, \Y% . (I —e™™m) .

Brief summaries for the similar problems in microelongated and micropolar media which will be used for
comparison in the later part of the work are given in Appendix A.

3. Eshelby tensors of microstretch medium

In this section, Eshelby tensors for the microstretch medium will be obtained. As it is known, one of the
major problems in Mori-Tanaka method is the determination of Eshelby tensors which establish the rela-
tions between the deformations of the matrix material and of the inclusions. These tensors are obtained by
Cheng and He (1995, 1997) for micropolar medium with spherical and cylindrical inclusions respectively
and by Kiris and Inan (2005) for microelongated medium with spherical inclusions. The results of these
works are summarized in Appendix B.

In the classical theory of elasticity, Mura (1982) defined the concept of ‘“‘eigenstrain’ as a nonelastic
deformation which occurs as an additional deformation to the elastic deformations, and the concept of
“eigenstress’ as the stress due to these eigenstrains. In the similar fashion, Hsich et al. (1980) and Cheng
and He (1995, 1997) introduced the concepts of “‘stress-free microstrain” and ‘“‘eigentorsion”, respectively
and finally Inan (1990) introduced ‘““microeigenstrain’ concept in the microstructural level. To describe the
deformations in an infinite microstretch material with inclusions, eigenstrains and microeigenstrains will be
defined as follows:

ey = e;A(Q), 7y =74(Q), 0 =0"4(Q), (54)

1, xeQ,

55
0, xeR*—Q. (53)
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Here, Q is a subdomain of the infinite body occupied by the inclusion and the quantities with superscript
“x” and denote the eigenstrains of the inclusion and general eigenstrains, respectively.
The geometric relations of the microstretch medium are given by Eq. (2). Then the constitutive equations
due to an inclusion take the following form:
ty = A0 = 0) + 43, (04 — 0%) + Ay (ew — &) + Ciit (P — Vi)
my; = B3(0 — 0') + By, (05 — 0%) + Cruji(ens — &) + Bjiws (i — 7ia)
m; = C}(0 — Ot) + Cj{,-(o,j - Of/‘) +A?/k(3jk - Fl]k) + ij/k(“/jk - y_[jk)a

ij

[{PEE]
t

(56)

Here, the constitutive coefficients of the linear isotropic microstretch medium are given by Eq. (4).

Now, we may obtain the final form of the fundamental equations by substituting constitutive equations
(56), the geometric relations (2) and the constitutive coefficients (4) into the equilibrium equations (1). Then
we get

200 + (/1 +u— %) Ujij + (.U + g) Uiji + 1€, + fi+ i =0,

(4 B)b; i+ v0ij; + xC€intiny — 27 + L + I;=0, (57)
aO()A,ii — 10— )voui,i +1+1I"=0.

The terms that have the superscript “#” in above equations are easily determined by the use of the balance
Eq. (1). Thus, we find

i t
fi=—tyy Li=-m

t / t_ ot i ‘
i iy — ikl ['=—m;—1+s,

tﬁj = Afjet + Aty m;j = Bijigfk + Bjiti Vi (58)
mt = c;.efj + ijky;k, s —1=C¢ —|—Afj3§j.

The unknown quantities u, ¢ and 0 in Eq. (57) may be determined by the use of the Green’s function ap-
proach. As it is known, only one Green’s function is sufficient to find the solution of the corresponding
problem in the classical theory of elasticity and four Green’s functions for each microelongated and micro-
polar media. Thus, we need total of nine Green’s function for the microstretch medium to determine all the
unknowns. To obtain the equations for the first set of Green’s functions, we assume that only the body
force f is acting to the origin of the coordinate system while the body moment 1 and body force density /
are absent. Then we have

J0&ni + (/1 +p— g) Gjnij + (u +§
(o0 + B)Gnij + YGinjs + 1€i5k%knj — 2%Gin = 0, (59)
ao8nii — 218, — 40%ini = 0.

)gin,jj + 1€k Ginj + 0in0(X — x') =0,

To obtain the next set of the equations, this time, we assume only the body moment 1 is acting at the origin
of the coordinate system while the body force f and body force density / are absent. Then we find

Do+ (/1 + - g) G nij + (u + %) Ginii + 1€k Giny = 0,
(o + ﬁ)@j,,,,-j + y(A;,-,,,jj + xe,-jk?k,,,j —24Gi + 0d(x — X') =0, (60)
@08, — 118, — 20D ini = 0.
For the last set of the equations, we consider that, only the body force density / is acting to the origin of the
coordinate system while the body force f and body moment 1 are absent. Thus, we arrive at,
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. A Ay 1\ 2 =
208, T (/1 +u— z) G jnij + (,U + z) G inj; + 1€k Gmy = 0,
(a4 P) /G\jn,ij + Vam,jj + 1€k ?kn,j - 2X{2m =0,

08,5 — M8y — 20 G i+ Ol d(x — X') = 0.

(61)

Here, 9,, é?,-,, and 9 .« denote the Green’s functions corresponding to u;, G, G,, and G,, for ¢;, and g, g,

and g, for 0 due to the three different loading types mentioned above and I; = —(1/4x)(1/r) ;.

Using the solution method given in Section 2, Green’s functions of the general case are found as follows:

Here

Gin(x = X) = G}, (x = X) + G, (x = X) + G, (x = X),

~ , , 1 e/
gkn(x _X) - Gkn(x_ X) :welml (7) 5
N

P
= , By | 1 rp <1 — e"'/’”)
g n - = - - + | — 9
X X) = e lhf 2 P S
R 1 e—r/hz -1 1 e—r/h3 _ e—r/hz 2 4y e—r/hz
TR N R O
l6mu r m 8T r o 16muyhs ¥

Gin(x —X) =0,

(x—x) = o (1zerh
&n n 47'EBO r ,n’

N ., __/1+2[1 l—eir/hl

9 (x—x) =

1 5kn }—F,U
gC —xX)=— 2__ n |
A 8n,u< r /1+2,ur’k>
B
i

—r/hy __ 1 —r/hy
hg (e ) - 6/0’! € ] )
r n r
1 ¥ jn 1-— e"'/hl
22 T\ )l
1 Jn

4
ap /L(z)

gE ¥ = 2270
kn(X X) 47'CB§

(62)

(63)

where B = y/[p(2u + y)] and the superscripts “C, P, E” denoted the classical, micropolar and microelonga-
tion quantities. As it is clearly seen from the first expression of Eq. (62), the Green’s function %, corre-
sponding to the displacement vector u;, due to the application of body force, f is the sum of the three
Green’s functions corresponding to classical, micropolar and microelongation cases. Besides, the Green’s
functions g, corresponding to microelongation 6 due to the application of the body moments and the

Green’s functions Gy, corresponding to microrotation ¢, due to the application of body force density
are obtained as zero as expected.

Now, to derive the solutions for u;, ¢, and 0 satisfying Eq. (57) in terms of the solutions of the Green’s
functions, we employ the reciprocity theorem

/(Fku; _F;uk)dm/(mﬁ; —dqsk)dw/(m —~I'0)dv = 0.
V 4 4

(64)
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Here
Fe=fl+fi, Gi=IL+1L L=I+1 (65)
For the present problem, we write

{u;w (b;(’ 6/7F;¢76;¢7l_‘,} = {gkm kagna 5kn5(x - Xl)>070} = {f(/ékna akmgn = 07 07 5kn5(x - X/)7 0}
= {@lmv akn = 07§n7 07 07 07 6knlk5(x - X/>} (66)

in (64) and express the three field quantities as

un(X) = /V [Fi(X) % (x = X) + Ce(X) G (x — X') + L(X)g, (x — X)]dX/,

b, (x) = /V[F (X) G (x = X') + Co(X) G (x — X))] dX, (67)

~
=

0(x) = /V[(Fk(X')%n(x —x) + L(x)g,(x — X)) /1, (x = x)] dx"

Here, the quantities /7, /! and /" in Eq. (58) may be regarded as the fictitious body forces, body moments and
body force density. Now, substituting the definitions given by Eqgs. (58) and (65) into Eq. (67) and integrat-
ing by parts with the assumption of vanishing boundary terms, we obtain

u,(x) = — / (200’ G +Ak1ij8§jgln4k + Bklij’));ijn,l — Xejik'gﬁijn + ag0'g, u — 10'g, — ;Loéijgﬁjgn] dx’,
y

¢, (x) =— / [ioat@kn‘k +Aklij8;j@1n‘k + Bklij’ygjakn‘l - Xejikgf:/'/G\kn] dx’,
1%

m@:_/ﬂ%m%M+AW%%M+wﬂgM_M0g_%%%gyumx
4

(68)
Eq. (68) express the displacement vector u, the microrotation vector ¢y, and the microelongation scalar 6
in terms of the Green’s functions. Now, strain, microrotation, microelongation, stress, couple stress and

other microquantities of a microstretch medium may be easily found by the use of the results given in
Egs. (68), (3) and (2), respectively.

3.1. Elastic field due to an inclusion in a microstretch material

In this section, we consider an inclusion occupying a subdomain Q in an infinite microelongated
medium. Now assuming the asymmetric eigenstrain ¢j;, eigentorsion y;;, and the microeigenstrain 0* in
Eq. (54) are constants over the inclusion (Cheng and He, 1995, 1997), we write Eq. (68) as in the following
form:

un(X) = 1 (X) + Loy (X)&5; + Sy (X)7;; + K (X) 0,
b, (X) = T ()&, + T (X)) (69)
0(x) = T;(x)e;, + K (x)0".
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Here, the coefficients of eigenstrain, eigentorsion and microeigenstrain are
L;(x) = —%(5,—,5,-k — 0ub1) /Q fékcn_,dx' — A /Q({é,m,, — @,?n_,)dx’ + 1€k /Q G dxX' + A0 /an dx’,
Juij(X) = _Bk/ij/QGkr1./dX/7
K,(x) = —AO/ G dX’ fao/g,,vkkdx’ + A /g,,dx’,
Q Q Q
/I\ni,(x) = —A,k,-,-/ng,dx' + XGA,-,-,C/Q G dx/, (70)

jnij(x) = _Bklij/ akn,ldX,:
Q

~

= G o
Il'j(X) = —Alkijlz % dX/ + }.05[] % dX,,

Q

3 Gt g
mm:f%/ khwf%/g“dy+m/§%y
o 1 o 1 i

n n n

and

W) = 15,0,

C 1 C ’ (71)

I~ (x) = —(/L5ij5k1 + poydj + M5i15jk) / gk,,,ldx .
Q

nij
Using Eqgs. (62) and (63) in (70) and (71) and after some mathematical manipulations, we arrive
Lij(x) = IS@/(X) + I}]/;Eij(x)?

1 1
Jij(X) = — 2 [YEnieM 1 j(X) + BEnuM 1 (X)] + 2 [YEnitM3 i (X, ha) + PEwiM (X, h2)],

aoo (27 — (A+2u)21) Ao

Ao/
. Bg M&kkn(xahl) +370M3‘,,(X,h1),

K,(x) = —ZB—OML,,(X) +

- 1
Lij(x) = A (1€ M1 4n(X) — p 4 1) EnpeM15(X) — (21 — %) €M 1 (X) ]

1
- @ [(2# + 1) €M 3 4 (X, h2) — (2p + 1) €M, (X, hy) — (20 — 1) € M3 s (X, hz)]

1 2u 4+
+ 3 €M 3 o (X, h3) + ﬁ €mM3(X, hy),
2

5 7+ B 2u+y
Juij(X) = = ——M jn(X) + a0

an [000:M 3 g (X, 1) + (7 + BYM 3 10 (X, h2)|

1
~2y [0‘5z/M3,kkn(X, h3) + (y + ﬁ)M3yi]»n(x,h3)]

2u+y

> [Offsist,n(Xy ha) 4 0iM (X, ha) + ﬂéjani(XahZ)]a
Apyhy
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2 i 2)0(/1 + ,U) )L(),u M2,ijn(x) 2)0B1,u M]{l:/-y, (X) /1/1031 M3.kkn(x7 hl)
10 ==, + : St
B() B() M]ﬂn(X) BO M]A’n(X) BO M]\,,(X)
_ 200Bip M (X, h1)  Zo(4+ 2p) 5“M3,n(X, h)
By Mu(x) Bo 7 Mp,(x)
Rx) = Mo+ G2 Bi[2% = (420 A] Myga(X,h) (2420 Msa(x, ) )
BO Bg Mlyn(X) Bo Ml,n (X) ’
where
A+ p A
(%) = T+t M jj(x) — A ey T 0yM1,(X) = 6i,M 1 ;(X) — 0;,M1,(X),
ISU( ) = Z,MBthltjn(X) ; (6,’,,M1J(X) — 5/,,M1’[(X))
- Bh% (iéijM3,kkll(X7 hz) + 2,uM3,,-jn(X, hz)) + Bié,]M&n (X7 hz)
AN AFIY VANV 73
+ |:B (tu + 2) + ,l,t:| 5_/nM3,1(X7 hZ) + |:B (,LL 2) 2/1:| 5171M3‘/ (X; hl)a ( )
204+ )y ph aly
IE = 4( Oé[M n - 0 M ijn }51M n h
mj(x) (/L_’_Z’u) AL, (X) (} +2,U)BO‘H 2,ij ( ) BO VL3 ke (X )
2ay/2 2aylg Pk
Bg O,uMSA,ijn(Xahl) Bz .U‘Mlzjn( ) F(;éijM3,n(Xahl)7
here
1
M3,kkn(xa h) = ﬁMln (X7 h) (74)
and we define the following potential functions
1 | 1 , 1 e "/ ,
MI(X):E Q;dx, MZ(X):E/QFdX’ M;(x,h) = 47r/ " dx’. (75)

As it is mentioned above, Eshelby tensor for an isotropic elastic body in classical elasticity are found by two
integrals which are the same of the first two integrals of Eq. (75) and they are given explicitly by Mura
(1982). Therefore, the problem of determining Eshelby tensors for a microstretch solid is basically con-
verted to the determination of third integral given by Eq. (75). The results for a spherical inclusion with
radius «a is given in (Cheng and He, 1995) as:

1
1 | —6(x2—3a2), X € Q,
M (x) = e —dx' = 7
TJal , xeR—Q,
3x
1
1 —@(x4—10a2x2—15a4), X € Q,
Mz(X) :E/rdx': a3 a2 (76)
Q — ([ Sx+— xcER - Q
15 x)’ ’
inhx/h
1 or/h ;,2_;,Z(tha)Mefa/h7 X € Q,
X
Ms(x, h) = 4n/ 7 X = —x/h

h2<acosh%—hsinh%) ex , xeRP—Q.

Here, x = |x|. Using Egs. (2), (69) and (71), we express the strain, microtorsion and microelongation in a
microstretch material as
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ex(X) = Ky ()&}, + Liij(X)7}; + My (x)07,
Vi (X) = Kiaip(X)e, + Liaiy (X)77, (77)

0(x) = Ky(x)¢; + M(x)0".

Here,

Kuij(x) = Iﬁj,k(x) + L (X) = €mdmij(X), Ly (X) = J 154 (X) — Epim mi(X)
M (x) = Kix(x),  Kiy(x) = Lo (%), Liig(x) = Jigja(x), (78)
Ky(x) =1;(x), M(x)=K(x).

These tensors are the modified version of the classical Eshelby tensors for microstretch materials includ-
ing spherical inclusions. They are not homogeneous over the inclusion even for spherical case, unlike the
classical theory of elasticity.

We may obtain the solutions due to microelongation, micropolar and classical cases as the special cases
of the microstretch theory. To arrive the solutions of microelongation, the micropolar constitutive coeffi-
cients are assumed absent. In the same way, to find the solutions for micropolar theory, the constitutive
coefficients due to microelongation are taken zero. To get the result for the classical theory both quantities,
due to microelongation and micropolar cases are assumed absent. That is,

be=0=0, y=o0=F=y=a=4=4=0 (79)
and we have only
Kyy(x) = [%‘k (x) (80)

and all the other Eshelby tensors are zero.
Eshelby tensor Sy in classical theory of elasticity is defined as:

&y = Sijklgzjv (81)
to arrive this result as a limit case of the present problem, we write from Eq. (77);
b (ew +en) = D) [lgjk(x) + IE/,/(X)} B ('Sij + 8];‘)' (82)

Here 1 Sjyk(x) is symmetric with respect to the indices i and j. On the other hand ¢, is a symmetric tensor in
classical elasticity. Thus, the comparison of Egs. (81) and (82) gives

1
Suy =5 |50 + 15, ()] (83)
For a spherical inclusion, Eq. (83) takes the following form:
Sv—1 4 —5v .
Skiij = méyﬁu + m (001 + 0110 ). (84)

This result is the same of the well-known Eshelby tensor for a spherical inclusion in the classical theory of
elasticity (Mura, 1982).

4. Conclusions
In this work, we have obtained the Eshelby tensors for isotropic homogeneous microstretch materials with

a spherical inclusion. It is also shown that the solutions corresponding to microelongation, micropolar and
classical cases are all the special cases of the microstretch theory. Using the obtained Eshelby tensors, the
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Mori-Tanaka method can be extended to the microstretch medium which we shall give the details in a further
work and determine the overall material moduli of damaged materials modeled as a microstretch continuum.

Appendix A
A.1. Solutions for microelongated medium

The general equations for the microelongated elastic fields and the fundamental equations are obtained
by Kiris and Inan (2005). Then the Eshelby tensors are found for the spherical inclusion in microelongated
medium (Kiris and Inan, 2005).

As it is known, microelongation theory is defined as a special case of microstretch theory which ignores
the effects of microrotations. The local balance of momentum and moment of momentum at a point of a
deformed microelongated medium are (Kiris and Inan, 2005)

tux +f1=0,

(A1)
mk‘k—l—t—s—&-l:O.
Geometrical relations and the linearized constitutive equations are summarized as in the following:
e = Urk, Vg = 30y, (A2)

ty = Al‘cle + A;nklam + Aklmngmm
s—t=C0+ Cz()’k +A}118k1, (A3)
my — ij) + CiIOJ —‘y—Ai/mS]m.

Here again f;. is the body force, / is the microelongation force density, u is the displacement vector, 0 is the

microelongation, #;; and sy, are stress tensors, m; is microelongation vector and ¢ = 54, § = Sx.
Constitutive coefficients of (A.3) for the linearized isotropic microelongated medium are

Al]il = }voékl, A;lnz = 0, C' = )vl, C;( = 0, Clil = aoék[,

(A4)
Aiimn = 20k10mn + U0kmOm + UkaOim;  Crimn = 0.

To obtain the governing equations for microelongated medium we substitute Egs. (A.2)-(A.4) into Eq.
(A.1). The result is
2001 + (A+ Wukss + pt urg + f1 =0,

. (A5)
6100% — /‘{10 — AoUkk +1=0.

Here A and u are Lamé constants, ag, 1o andA; are new constitutive coefficients due to microelongation and
they are given in Eq. (5).

The results of the Galerkin’s representation for microelongated medium are given by Kiris and Inan
(2005) and the fundamental solution for infinite, elastic microelongated medium are

_ Bo+dip(q By—lip((q-1)r aps [q 3ap ((q-1)r
u= 8nuBy (r) * 8nuBy r + 4nB, (r3) 47B, r
ap ;Llh

2 2 2
— B —Mhi q _, Jah q
A R vV v/ (ﬂ r/’u) G M (_ '/hl) il I vEAVE v/ (_> A6
+ 4B, XV re + 4nBOhf re +47‘EB() v r)’ (A-6)

0= 47}%0 () + 47/;;30 ve(e).

Here, q is the concentrated force acting at the origin of the coordinate system.
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Solutions for the second case which we assume VI =1 and I = pd(x;,xs,x3) acting at the origin of the
coordinate system are found as (Kiris and Inan, 2005)

o [P (p-)F Ao (P i Joht p —r
_ L _ F-r/m LN vANE v/ 1o/
" 8nBy [r I 4nBy re 4r, By v r( © )); (A7)
(/“ 2 ) p —r/h .
VTG (P ey ).
0 7B, r( e/

A.2. Solutions for micropolar medium

As it is known, micropolar medium is defined by Eringen with the assumption that the material particles
are rigid and can only rotate independently in addition to the bulk deformation (Eringen, 1999). General
equations of micropolar medium are given by Eringen (1999) and the fundamental solutions are obtained
by Sandru (1966). Then Cheng and He (1995) found the Eshelby tensors for a spherical inclusion. The re-
sults of these two papers are given in the followings.

The equations of equilibrium for micropolar medium (Eringen, 1999):

tag + f1 =0,

My + €tmntn + 11 = 0,
Geometrical relations:

& = Uik + €umPry Vit = Prs (A9)
and linear constitutive equations:

i = Artmn€mn + CrimnV >

M = CounikCmn + BlionnV -

(A.10)

Here /i, ¢ and my,; are the body couple, microrotation vector and the couple stress respectively and the
constitutive coefficients are

Akimn = A0k10mn + (,U + %) OkmOmn + (,U - %) OtnOtmy  Crimn = 0,

(A.11)
Bklmn = aéklémn + ﬁéknélm + yékmélm
Substituting Egs. (A.11) and (A.9) into Eq. (A.10) and then into Eq. (A.8), we obtain
X X
= A - ) =
(,M + 2) U + ( +u 2) Uit + L€ sm Py + 1 =0, (A12)

VP + (4 B — 219 + 1€ smttmi + 11 = 0.

Here o, 8, y and y are new constitutive coefficients for the micropolar medium.

The results of the Galerkin’s approach for micropolar medium are given by Sandru (1966) for two types
of loadings. In the first case, the concentrated force f = qd(x1, x5, x3) is assumed acting at the origin of the
coordinate system. The solutions for this case are

=t [ 0) + (457 i o <)

¢ = %V x E(l - e"'/hz)]

(A.13)

Here v is Poisson’s ratio.
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For the second loading, f is assumed absent, and 1 = pd(xy, x,, x3) is acting at the origin. Then the solu-

tions are
w=ge ¥ x [ —em)
it , (A.14)
_ * r At/
p VA0+16WX L(l e )].
Here
1 1
A= — (e, A.l
s= g V|| (A13)
Appendix B
B.1. Eshelby tensors for microelongated media
& (X) = Ky (x)g]; + Lu(x) 9", (B.1)
$(x) = Ky(x)e; + L(x)¢", '
K (x) = 17, (%) + L (), Lu(x) = J14(x), (B.2)
kij(x) :117( )7 Z‘(X) :j(x)7
200+ w)ig P i
I (X)) =2 2/70 5 a7 2085 M M,y
0) = = TR M (x) - L0 (5 ) = (g i)
_2a 22 api2 2a /12
02 OMMI 1/71( ) 0—2())v51:/M3.kkn(Xahl) 0 ,LLM3 l]n(X h )
B, B; 0
Y aplo |22 — (242 )
Ju(x) = ZAO M (X)) + 0|2 21( #)]Mlkkn(xahl) d S M, (x, h),
By B; By
5 Ao(A+ p) Joft 200B 1 2AoB)
1i(x) :2T5i/‘+ [B Mo (X) + B My jn(X) = —5— B 61 M3 i (X, 1)
2)»031[1 l()(/h + 2#) 1
_ M. _ T AR s o -
B(z) 3,1_/rt<x7hl> B() 51] 3,71(X7h1> M]tn(X)7
oo e n) [Bi(22g — A+ 2u) M2+ 2u) 1
J(x) = B, - B M3 i (X, 1) + TMM(X? hy) Max)’
A+ A
(%) = T Mo (%) = T 01 (%) = (%) — S 1(x).
(B.3)

B.2. Eshelby tensors for micropolar media
Emn (X) - Kmnji(x)sjl' + Lmnji(x)’));[?

(%) = Ko (X)65, + Lo (x)7

Jt
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Kml’ljl( ) ]nC]z m(X) + ]nji‘m (X) - Elmnilji(x)7 f(mnjl(x) = ]nji‘,m (X);

. . . (B.5)

Lmnji(x) = Jnji,m(x) - Glanlji(X)a Lmnji(x) = J"jl','” (X)’
1;i(X) = 2Buh3M, ;;,(x) + [5,,,M1 i(X) = 0iuM 1 j(X)] — BR3 [28,;M 3 jaon (X, ha) + 20M 3 (X, 12) ]

+ Blléilen (X7 hZ) + |: 2 :| 61nM3] X h2> |: (,LL )2() :u:| 5jnM3‘i(X7 h2)7

1

Jni(X) = ~ o [yEnieM 1 jie(X) + BEnuM1u(X)] + [/GmkM3jk(X hy) + BEniM (X, ha)],
. 1
Ly(x) = E [Xeijle,kn(X) — Cu+ ) €mMi j(x) — 2u — X)Enjle,ik(X)}

"I (21 + 1) €M (X, ha) — 2+ 1) EnieM 3 jx (X, ) — (24t — 1) EppeM 3 (X, )]

1 2u+
+§€ijkM3,kn(X7h3) a le;nM3(X hy),
2
. y+ B 2u+y
J,,jl-(X) = — 4—#M1 l/’l( ) + 4#/( [OCéle3 kin (X hZ) (V + ﬁ)M3,ijn(Xa hZ)]
1 2u+
- [O((sing.‘kk,, (X, hg) + (“/ + B)M3,ijn (X; h3)} - ,U L [“511M3 ,,(X h2) V(sianj(Xv hZ)
2y Ah;
+ BO M3 (X, ha)],
A+pu A
(%) = 5 Maan (%) = T 01 (%) = b1 (X) = S 1u(x).
(B.6)
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