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Abstract

In the present work, microelastic and macroelastic fields are presented for the case of spherical inclusions embedded
in an infinite microstretch material using the concept of Green�s functions. The Eshelby tensors are obtained for a
spherical inclusion and it is shown that their forms for microelongated, micropolar and the classical cases are the proper
limiting cases of the Eshelby tensors of microstretch materials.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Eshelby tensor; Eigenstrain; Microstretch; Microelongation; Micropolar; Green�s functions
1. Introduction

A microcontinuum is considered as the collection of material particles, which can deform independently
in the microscale in addition to the classical bulk deformation of the material. Eringen and Suhubi (1964)
and Suhubi and Eringen (1964) introduced and developed a general theory for this phenomenon which is
called micromorphic continua. As it is known, the general micromorphic theory is very complicated even
for the linear case. To overcome the difficulties, Eringen introduced first the micropolar elasticity (Eringen,
1966) and, then the microstretch elasticity (Eringen, 1990). Because of their well suitability to the nature of
many materials, both theories were universally accepted.
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Although the numbers of the unknown constitutive coefficients in micropolar and microstretch theories
are considerably less than the general case, there are still some undetermined constitutive coefficients. Thus,
we followed a different approach (Inan, 1990) and considered an additional homogenization procedure sim-
ilar to the one known for the composite materials, to evaluate and estimate overall effective material prop-
erties. To apply the usual homogenization techniques (Mori–Tanaka method (Mori and Tanaka, 1973;
Benveniste, 1987), for instance), we need to know the Eshelby tensors which establish the relation between
the strains of the matrix material and of the inclusion. Several problems have been solved by using the
Eshelby�s equivalent inclusion theory (Eshelby, 1957). For the linear theory of the asymmetric elasticity,
some solutions are given by Sandru (1966). Hsieh et al. (1980) and Hsieh (1982) have derived general
formulas for the volume defects in micropolar media. Finally, Cheng and He (1995, 1997) obtained four
Eshelby tensors for the spherical and the circular cylindrical inclusion in an isotropic centrosymmetric
micropolar media, respectively. Sharma and Dasgupta (2002) calculated averaged stress and strains using
numerical versions of the micropolar Eshelby tensors and extended the Mori–Tanaka method to the micro-
polar medium.

In the present work, the fundamental solutions are obtained for the microstretch medium. And then the
Eshelby tensors are obtained for a spherical inclusion and it is shown that the Eshelby tensors for the
microelongated, micropolar and the classical cases are the limiting cases of the Eshelby tensors of micro-
stretch materials.
2. Fundamental solutions

The fundamental solutions for microelongated and micropolar media are given by Kiris and Inan (2005)
and Cheng and He (1995), respectively. Applying a similar method given in Kiris and Inan (2005), we ob-
tain the fundamental solutions and then the Eshelby tensors for microstretch medium.

As it is mentioned in the introduction, microstretch material is defined as the body with non-rigid par-
ticles which may do volume changes and microrotations in addition to the bulk deformation in the micro-
structural level. In other words, the material particles of such a material can stretch and contract
independently of each others translations and rotations.

Since our task is to obtain the Eshelby tensors for the microstretch materials, first we shall obtain the
field equations of the medium. The local forms of the equations of balance of momentum and
moment of momentum at a point of a deformed microstretch body for the static case are given as (Eringen,
1999)
tkl;k þ fl ¼ 0;

mkl;k þ 2lmntmn þ ll ¼ 0;

mk;k þ t � sþ l ¼ 0;

ð1Þ
where tkl is the stress tensor, skl and mkl are the couple stress tensors, mk is the microstretch vector and
t = tkk, s = skk. fl, ll and l are the body force, the body moment and the body force densities, respectively.
Subscripts preceded by a comma stand for derivatives with respect to the corresponding spatial coordinates
and 2lmn is the permutation symbol.

The geometrical definitions and relations are given below:
ekl ¼ ul;k þ 2lkm/m; ckl ¼ /k;l; ck ¼ 3h;k; e ¼ 3h. ð2Þ
Here, ekl is the strain tensor, /k is the microrotation vector, h is the microelongation and uk is the displace-
ment vector.
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The linearized constitutive equations for a microstretch medium are given by Eringen (1999) as
tkl ¼ As
klhþ As

mklh;m þ Aklmnemn þ Cklmncmn;

mkl ¼ Bs
lkhþ Bs

mlkh;m þ Cmnlkemn þ Blkmncmn;

mk ¼ Cs
khþ Cs

klh;l þ As
klmelm þ Bs

klmclm;

s� t ¼ Cshþ Cs
kh;k þ As

klekl þ Bs
klckl;

ð3Þ
where
As
ij ¼ k0dij; As

kij ¼ 0; Aijkl ¼ kdijdkl þ lþ v
2

� �
dikdjl þ l� v

2

� �
dildjk;

Bs
ij ¼ 0; Bs

kij ¼ b02kij; Bijkl ¼ adijdkl þ bdildjk þ cdikdjl

Cs ¼ k1; Cs
i ¼ 0; Cs

ij ¼ a0dij; Cijkl ¼ 0.

ð4Þ
Here k, l are Lamé constants, a, b, c and v are new constitutive coefficients due to the micropolar character
of the medium, a0, k0 and k1 are some new constitutive coefficients due to the microelongation and they are
given as (Eringen, 1999)
a0 ¼ 6s1 þ 6s2 þ 9s3 þ s4 þ 2s5 þ s6 þ 3s7 þ 2s8 þ s9 þ 3s10 þ s11;

k0 ¼ 3tþ 2r� v;

k1 ¼ 9sþ 6gþ 3v.

ð5Þ
We substitute the constitutive equations into the balance equations to obtain the fields equations for the
microstretch medium. Thus, we find
lþ v
2

� �
ul;kk þ kþ l� v

2

� �
uk;kl þ k0h;l þ v2lkm/m;k þ fl ¼ 0;

c/l;kk þ ðaþ bÞ/k;kl þ v2lkmum;k � 2v/l þ ll ¼ 0;

a0h;kk � k1h� k0uk;k þ l ¼ 0.

ð6Þ
For the Galerkin�s Representation (Galerkin, 1930), it is more convenient to write all seven of Eq. (6) in the
matrix form as
M

u1

u2

u3

/1

/2

/3

h

2666666666664

3777777777775
¼ �

f1

f2

f3

l1

l2

l3

l

2666666666664

3777777777775
. ð7Þ
To achieve this, we define first,
X i ¼
o

oxi
; D ¼ X 2

1 þ X 2
2 þ X 2

3; �1 ¼ ðkþ 2lÞD; �2 ¼ lþ v
2

� �
D;

�3 ¼ a0D� k1; �4 ¼ cD� 2v; �5 ¼ ðaþ bþ cÞD� 2v
ð8Þ
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and then find M as
M ¼

�2 þ kþ l� v
2

� �
X 2

1 kþ l� v
2

� �
X 1X 2 kþ l� v

2

� �
X 1X 3 0 �vX 3 vX 2 k0X 1

kþ l� v
2

� �
X 1X 2 �2 þ kþ l� v

2

� �
X 2

2 kþ l� v
2

� �
X 2X 3 vX 3 0 �vX 1 k0X 2

kþ l� v
2

� �
X 1X 3 kþ l� v

2

� �
X 2X 3 �2 þ kþ l� v

2

� �
X 2

3 �vX 2 vX 1 0 k0X 3

0 �vX 3 vX 2 �4 þ ðaþ bÞX 2
1 ðaþ bÞX 1X 2 ðaþ bÞX 1X 3 0

vX 3 0 �vX 1 ðaþ bÞX 1X 2 �4 þ ðaþ bÞX 2
2 ðaþ bÞX 2X 3 0

�vX 2 vX 1 0 ðaþ bÞX 1X 3 ðaþ bÞX 2X 3 �4 þ ðaþ bÞX 2
3 0

�k0X 1 �k0X 2 �k0X 3 0 0 0 �3

2666666666664

3777777777775
.

ð9Þ

Now, denoting the inverse matrix of M by
M�1 ¼ ðnijÞ
�3�4�7

; ð10Þ
where
nii ¼ �7 �1 ��2X 2
i

� �
; i ¼ 1; 2; 3;

nii ¼ �4 �5 ��6X 2
i�3

� �
; i ¼ 4; 5; 6;

nii ¼ �3�7�8; i ¼ 7;

nij ¼ nji ¼ ��2�7X iX j; i 6¼ j; i; j ¼ 1; 2; 3;

nij ¼ nji ¼ ��4�6X i�3X j�3; i 6¼ j; i; j ¼ 4; 5; 6;

n7i ¼ �ni7 ¼ �3�7k0X i; i ¼ 1; 2; 3;

n14 ¼ n25 ¼ n36 ¼ n41 ¼ n52 ¼ n63 ¼ n7i ¼ ni7 ¼ 0; i ¼ 4; 5; 6;

n15 ¼ �n24 ¼ n42 ¼ �n51 ¼ �4�7vX 3;

n16 ¼ �n34 ¼ n43 ¼ �n61 ¼ ��4�7vX 2;

n26 ¼ �n35 ¼ n53 ¼ �n62 ¼ �4�7vX 1

ð11Þ
and
�1 ¼ �1�3�4 þ k2
0�4D;

�2 ¼ k2
0 þ kþ l� v

2

� �
�3

h i
�4 � v2

�3;

�3 ¼ �2�4 þ v2D;

�4 ¼ �1�3 þ k2
0D;

�5 ¼ �2�5;

�6 ¼ ðaþ bÞ�2 � v2
� �

;

�7 ¼ �5;

�8 ¼ �1.

ð12Þ
The solution of the matrix equation (7) is written as
u1

u2

u3

/1

/2

/3

h

2666666666664

3777777777775
¼ N

F 1

F 2

F 3

L1

L2

L3

L

2666666666664

3777777777775
. ð13Þ
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Here
N ¼ ðnijÞ7�7 ð14Þ

and
�3�4�7F ¼ �f; �3�4�7L ¼ �l; �3�4�7L ¼ �l ð15Þ

From Eqs. (13) and (14) we find
u ¼ �4 �1�3 þ k2
0D

� �
u� k2

0�4 þ kþ l� v
2

� �
�4 � v2

h i
�3

n o
rr � u� v�5r� u� � k0�5ru��;

/ ¼ �2�5u
� � aþ bð Þ�2 � v2

� �
rr � u� � v �1�3 þ k2

0D
� �

r� u;

h ¼ k0 �2�4 þ v2D
� �

r � uþ �1�5u
��.

ð16Þ
Here
u ¼ �5F; u� ¼ ½�1�3 þ k2
0D�L; u�� ¼ ½�2�4 þ v2D�L ð17Þ
and equations for them become
ð�1�3 þ k2
0DÞð�2�4 þ v2DÞu ¼ �f;

�5ð�2�4 þ v2DÞu� ¼ �l;

�5ð�1�3 þ k2
0DÞu�� ¼ �l.

ð18Þ
Substituting the open forms of the operators given by Eq. (8) into Eqs. (16) and (18), we arrive at,
u ¼ ðcD� 2vÞ½ðkþ 2lÞDða0D� k1Þ þ k2
0D�u

� k2
0 cD� 2vð Þ þ kþ l� v

2

� �
cD� 2vðkþ lÞ

h i
ða0D� k1Þ

n o
rr � u

� v ðaþ bþ cÞD� 2v½ �r � u� � k0 ðaþ bþ cÞD� 2v½ �ru��;

/ ¼ lþ v
2

� �
D ðaþ bþ cÞD� 2v½ �u� � ðaþ bÞ lþ v

2

� �
D� v2

h i
rr � u�

� v ðkþ 2lÞDða0D� k1Þ þ k2
0D

� �
r� u;

h ¼ k0D lþ v
2

� �
cD� 2lv

h i
r � uþ ðkþ 2lÞD½ðaþ bþ cÞD� 2v�u��

ð19Þ
and
½ðkþ 2lÞða0D� k1Þ þ k2
0�D2 lþ v

2

� �
cD� 2lv

h i
u ¼ �f;

ðaþ bþ cÞD� 2v½ � lþ v
2

� �
cD2 � 2lvD

h i
u� ¼ �l;

ðaþ bþ cÞD� 2v½ �½ðkþ 2lÞDða0D� k1Þ þ k2
0D�u�� ¼ �l.

ð20Þ
In the first step of our formulation we assume l = 0, l = 0 and body force field f as irrotational. Thus, we
write
f ¼ rp0. ð21Þ

Then from Eqs. (16) and (18), we find
ð�1�3 þ k2
0DÞK0 ¼ �p0. ð22Þ
Here
ð�2�4 þ v2DÞu ¼ rK0. ð23Þ
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Now, solutions for this case are obtained simply as
u ¼ �3rK0;

/ ¼ 0;

h ¼ k0r � ðrK0Þ.
ð24Þ
For the solenoidal force field, we have p, such that
f ¼ r� p. ð25Þ
In the same way, from Eqs. (16) and (18) we obtain
ð�2�4 þ v2DÞK ¼ �p. ð26Þ
Here
ð�1�3 þ k2
0DÞu ¼ r� K. ð27Þ
Then the solutions become
u ¼ r� ð�4KÞ;
/ ¼ �vr� ðr � KÞ;
h ¼ 0.

ð28Þ
In the second step, we assume f = 0, l = 0 and the body moments, l are nonzero. Considering an irrotational
field first, we write
l ¼ rp�0. ð29Þ

Then we find
�3K
�
0 ¼ �p�0. ð30Þ
Here
ð�2�4 þ v2DÞu� ¼ rK�0 ð31Þ

and the solutions are
u ¼ 0;

/ ¼ rK�0;

h ¼ 0.

ð32Þ
For solenoidal moment field, we take
l ¼ r� p� ð33Þ

and obtain
ð�2�4 þ v2DÞK� ¼ �p�. ð34Þ

Here
�3u
� ¼ r � K� ð35Þ
and the solutions are
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u ¼ �vr� ðr� K�Þ;
/ ¼ r� ð�2K

�Þ;
h ¼ 0.

ð36Þ
As the last step, we assume f = 0, l = 0 and l is nonzero. This time we define
�3u
�� ¼ K��0 . ð37Þ
Then, from Eqs. (16) and (18), we have
ð�1�3 þ k2
0DÞK��0 ¼ �l. ð38Þ
Thus, the solutions are
u ¼ �k0rK��0 ;

/ ¼ 0;

h ¼ �1K
��
0 .

ð39Þ
In the following part of this section, we will determine the fundamental solutions for an infinite medium
for a force field q, concentrated at the origin of the coordinate system. Using Helmholtz decomposition,
Eqs. (22) and (26) are written as
ðkþ 2lÞa0D
2 � ððkþ 2lÞk1 � k2

0ÞD
� �

K0 ¼
1

4p
q � r 1

r

� 	
;

lþ v
2

� �
cD2 � 2lvD

h i
K ¼ 1

4p
q�r 1

r

� 	
;

ð40Þ
where r = jxj. The solutions are given as
K0 ¼ �
1

8pB0

q � r
r

� �
� h2

1

4pB0

q � r 1

r
ð1� e�r=h1Þ

� 	
;

K ¼ 1

8pB3

r� ðqrÞ þ h2
2

4pB3

r� q

r
ð1� e�r=h2Þ

� �
;

ð41Þ
where
B0 ¼ ðkþ 2lÞk1 � k2
0; B2 ¼ lþ v

2

� �
c;

B1 ¼ ðkþ 2lÞa0; B3 ¼ 2lv;

h2
1 ¼

B1

B0

; h2
2 ¼

B2

B3

.

ð42Þ
On the other hand, from Eqs. (24) and (28), we write
u ¼ ða0D� k1ÞrK0 þ ðcD� 2vÞr � K;

/ ¼ �vr� ðr � KÞ;
h ¼ k0r � ðrK0Þ.

ð43Þ
Now, substituting the results of Eq. (41) into Eq. (43), we find the displacement, microrotation and micro-
elongation as
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u ¼ ðkþ 3lÞk1 � k2
0

8plB0

q

r

� �
þ a0

4pB0

q

r3

� �
þ ðkþ lÞk1 � k2

0

8plB0

ðq � rÞr
r3

� 	
� 3a0

4pB0

ðq � rÞr
r5

� 	
� k2

0

4pðkþ 2lÞB0

q

r
e�r=h1

� �
þ a0

4pB0

r�r� q

r
e�r=h1

� �
þ k1B1

4pB2
0

r�r� q

r
ð1� e�r=h1Þ

� �
� c

16pl2
r�r� q

r
ð1� e�r=h2Þ

� �
;

/ ¼ 1

8pl
r� q

r
ð1� e�r=h2Þ

� �
;

h ¼ k0

4pB0

q � r
r3

� �
þ k0

4pB0

r � q

r
e�r=h1

� �
.

ð44Þ
In the sequel, we will obtain the solutions of the next two steps. Thus, we assume that concentrated body
moment p is acting at the origin of the coordinate frame. This case is represented by Eqs. (30) and (34).
Then we write
½ðaþ bþ cÞD� 2v�K�0 ¼
1

4p
p � r 1

r

� 	
;

lþ v
2

� �
cD2 � 2lvD

h i
K� ¼ 1

4p
p�r 1

r

� 	
.

ð45Þ
The solutions of these equations are
K�0 ¼ �
1

4pB4

p � r 1

r
ð1� e�r=h3Þ

� 	
;

K� ¼ 1

8pB3

r� ðprÞ þ h2
2

4pB3

r� p

r
ð1� e�r=h2Þ

� �
.

ð46Þ
Here
B4 ¼ 2v; B5 ¼ aþ bþ c; h2
3 ¼ B5=B4. ð47Þ
On the other hand by combining Eqs. (32) and (36), we may write
u ¼ �vr� ðr � K�Þ;

/ ¼ rK�0 þ lþ v
2

� �
Dr� K�;

h ¼ 0.

ð48Þ
Now substituting the solutions of (46) into Eq. (48) for the second step, we obtain the displacement, micro-
rotation and the microelongation as
u ¼ 1

8pl
r� p

r
ð1� e�r=h2Þ

� �
;

/ ¼ 1

4pB5

p

r
e�r=h3

� �
� 1

4pB4

r�r� p

r
ð1� e�r=h3Þ

� �
þ ð2lþ vÞ

8pB3

r�r� p

r
ð1� e�r=h2Þ

� �
;

h ¼ 0.

ð49Þ
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Finally we write rl ¼ �l and �l ¼ �pdðx1; x2; x3Þ for the concentrated force density at the origin of the coordi-
nate system. Then from Eq. (38), we find
fðkþ 2lÞa0D
2 � ½ðkþ 2lÞk1 � k2

0�DgK��0 ¼
1

4p
�p � r 1

r

� 	
. ð50Þ
Solution of this equation is
K��0 ¼ �
1

8pB0

�p � r
r

� 	
� h2

1

4pB0

�p � r 1

r
ð1� e�r=h1Þ

� 	
. ð51Þ
In the same way, from Eq. (39), we write
u ¼ �k0rK��0 ;

/ ¼ 0;

h ¼ ðkþ 2lÞDK��0 .

ð52Þ
Finally, substituting the expression (51) into Eq. (52), we find the solutions corresponding to the third step;
u ¼ k0

8pB0

�p

r
� ð�p � rÞ�r

r3


 �
� k0

4pB0

�p

r
e�r=h1

� 	
þ k0h2

1

4pB0

r�r�
�p

r
ð1� e�r=h1Þ

� 	
;

/ ¼ 0;

h ¼ �ðkþ 2lÞ
4pB0

r �
�p

r
ð1� e�r=h1Þ

� 	
.

ð53Þ
Brief summaries for the similar problems in microelongated and micropolar media which will be used for
comparison in the later part of the work are given in Appendix A.
3. Eshelby tensors of microstretch medium

In this section, Eshelby tensors for the microstretch medium will be obtained. As it is known, one of the
major problems in Mori–Tanaka method is the determination of Eshelby tensors which establish the rela-
tions between the deformations of the matrix material and of the inclusions. These tensors are obtained by
Cheng and He (1995, 1997) for micropolar medium with spherical and cylindrical inclusions respectively
and by Kiris and Inan (2005) for microelongated medium with spherical inclusions. The results of these
works are summarized in Appendix B.

In the classical theory of elasticity, Mura (1982) defined the concept of ‘‘eigenstrain’’ as a nonelastic
deformation which occurs as an additional deformation to the elastic deformations, and the concept of
‘‘eigenstress’’ as the stress due to these eigenstrains. In the similar fashion, Hsieh et al. (1980) and Cheng
and He (1995, 1997) introduced the concepts of ‘‘stress-free microstrain’’ and ‘‘eigentorsion’’, respectively
and finally Inan (1990) introduced ‘‘microeigenstrain’’ concept in the microstructural level. To describe the
deformations in an infinite microstretch material with inclusions, eigenstrains and microeigenstrains will be
defined as follows:
et
ij ¼ e�ijKðXÞ; ct

ij ¼ c�ijKðXÞ; ht ¼ h�KðXÞ; ð54Þ

KðXÞ ¼
1; x 2 X;

0; x 2 R3 � X.

�
ð55Þ
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Here, X is a subdomain of the infinite body occupied by the inclusion and the quantities with superscript
‘‘*’’ and ‘‘t’’ denote the eigenstrains of the inclusion and general eigenstrains, respectively.

The geometric relations of the microstretch medium are given by Eq. (2). Then the constitutive equations
due to an inclusion take the following form:
tij ¼ As
ijðh� htÞ þ As

kijðh;k � ht
;kÞ þ Aijklðekl � et

klÞ þ Cijklðckl � ct
klÞ;

mij ¼ Bs
jiðh� htÞ þ Bs

kjiðh;k � ht
;kÞ þ Ckljiðekl � et

klÞ þ Bjiklðckl � ct
klÞ;

mi ¼ Cs
i ðh� htÞ þ Cs

ijðh;j � ht
;jÞ þ As

ijkðejk � et
jkÞ þ Bs

ijkðcjk � ct
jkÞ;

s� t ¼ Csðh� htÞ þ Cs
iðh;i � ht

;iÞ þ As
ijðeij � et

ijÞ þ Bs
ijðcij � ct

ijÞ.

ð56Þ
Here, the constitutive coefficients of the linear isotropic microstretch medium are given by Eq. (4).
Now, we may obtain the final form of the fundamental equations by substituting constitutive equations

(56), the geometric relations (2) and the constitutive coefficients (4) into the equilibrium equations (1). Then
we get
k0h;i þ kþ l� v
2

� �
uj;ij þ lþ v

2

� �
ui;jj þ v2ijk/k;j þ fi þ f t

i ¼ 0;

ðaþ bÞ/j;ij þ c/i;jj þ v2ijkuk;j � 2v/i þ li þ lt
i ¼ 0;

a0h;ii � k1h� k0ui;i þ lþ lt ¼ 0.

ð57Þ
The terms that have the superscript ‘‘t’’ in above equations are easily determined by the use of the balance
Eq. (1). Thus, we find
f t
i ¼ �tt

ji;j; lt
i ¼ �mt

ji;j � 2ijktt
jk; lt ¼ �mt

i;i � tt þ st;

tt
ij ¼ As

ijh
t þ Aijkle

t
kl; mt

ij ¼ Bs
kjih

t
;k þ Bjiklc

t
kl;

mt
i ¼ Cs

ijh
t
;j þ Bs

ijkc
t
jk; st � tt ¼ Csht þ As

ije
t
ij.

ð58Þ
The unknown quantities u, / and h in Eq. (57) may be determined by the use of the Green�s function ap-
proach. As it is known, only one Green�s function is sufficient to find the solution of the corresponding
problem in the classical theory of elasticity and four Green�s functions for each microelongated and micro-
polar media. Thus, we need total of nine Green�s function for the microstretch medium to determine all the
unknowns. To obtain the equations for the first set of Green�s functions, we assume that only the body
force f is acting to the origin of the coordinate system while the body moment l and body force density l

are absent. Then we have
k0gn;i þ kþ l� v
2

� �
Gjn;ij þ lþ v

2

� �
Gin;jj þ v2ijkGkn;j þ dindðx� x0Þ ¼ 0;

ðaþ bÞGjn;ij þ cGin;jj þ v2ijkGkn;j � 2vGin ¼ 0;

a0gn;ii � k1gn � k0Gin;i ¼ 0.

ð59Þ
To obtain the next set of the equations, this time, we assume only the body moment l is acting at the origin
of the coordinate system while the body force f and body force density l are absent. Then we find
k0ĝn;i þ kþ l� v
2

� �bGjn;ij þ lþ v
2

� �bG in;jj þ v2ijk
bGkn;j ¼ 0;

ðaþ bÞbGjn;ij þ cbGin;jj þ v2ijk
bGkn;j � 2vbGin þ dindðx� x0Þ ¼ 0;

a0ĝn;ii � k1ĝn � k0
bGin;i ¼ 0.

ð60Þ
For the last set of the equations, we consider that, only the body force density l is acting to the origin of the
coordinate system while the body force f and body moment l are absent. Thus, we arrive at,
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k0
^̂gn;i þ kþ l� v

2

� � bbG jn;ij þ lþ v
2

� � bbG in;jj þ v2ijk
bbG kn;j ¼ 0;

ðaþ bÞ bbGjn;ij þ c
bbGin;jj þ v2ijk

bbG kn;j � 2v
bbG in ¼ 0;

a0
^̂gn;ii � k1

^̂gn � k0
bbG in;i þ dinI idðx� x0Þ ¼ 0.

ð61Þ
Here, Gin, bGin and
bbG in denote the Green�s functions corresponding to ui, Gin, Ĝin and ^̂Gin for /i, and gn, ĝn

and ^̂gn for h due to the three different loading types mentioned above and Ii = �(1/4p)(1/r),i.
Using the solution method given in Section 2, Green�s functions of the general case are found as follows:
Gknðx� x0Þ ¼ GC
knðx� x0Þ þ GP

knðx� x0Þ þ GE
knðx� x0Þ;

bGknðx� x0Þ ¼ Gknðx� x0Þ ¼ 1

8pl
2knl

e�r=h2 � 1

r

� 	
;l

;

bbG knðx� x0Þ ¼ k0B1

4pB2
0

1

h2
1

r;kn

2
þ 1� e�r=h1

r

� 	
;kn

" #
;

bGknðx� x0Þ ¼ � 1

16pl
e�r=h2 � 1

r

� 	
;kn

þ 1

8pv
e�r=h3 � e�r=h2

r

� 	
;kn

þ 2lþ v

16plvh2
2

e�r=h2

r
dkn;

bbGknðx� x0Þ ¼ 0;

gnðx� x0Þ ¼ � k0

4pB0

1� e�r=h1

r

� 	
;n

;

ĝnðx� x0Þ ¼ 0;

^̂gnðx� x0Þ ¼ � kþ 2l
4pB0

1� e�r=h1

r

� 	
;n

.

ð62Þ
Here
GC
knðx� x0Þ ¼ 1

8pl
2
dkn

r
� kþ l

kþ 2l
r;kn

� 	
;

GP
knðx� x0Þ ¼ B

4p
h2

2

e�r=h2 � 1

r

� 	
;kn

� dkn
e�r=h2

r

" #
;

GE
knðx� x0Þ ¼ a0k

2
0

4pB2
0

1

h2
1

r;kn

2
þ 1� e�r=h1

r

� 	
;kn

" #
;

ð63Þ
where B = v/[l(2l + v)] and the superscripts ‘‘C, P, E’’ denoted the classical, micropolar and microelonga-
tion quantities. As it is clearly seen from the first expression of Eq. (62), the Green�s function Gkn corre-
sponding to the displacement vector uk due to the application of body force, f is the sum of the three
Green�s functions corresponding to classical, micropolar and microelongation cases. Besides, the Green�s
functions ĝn corresponding to microelongation h due to the application of the body moments and the

Green�s functions
bbGkn corresponding to microrotation /k due to the application of body force density

are obtained as zero as expected.
Now, to derive the solutions for uk, /k and h satisfying Eq. (57) in terms of the solutions of the Green�s

functions, we employ the reciprocity theorem
Z
V
ðF ku0k � F

0
kukÞdV þ

Z
V
ðCk/

0
k � C

0
k/kÞdV þ

Z
V
ðLh0 � L

0
hÞdV ¼ 0. ð64Þ
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Here
F k ¼ f t
k þ fk; Ck ¼ lt

k þ lk; L ¼ lt þ l. ð65Þ

For the present problem, we write
fu0k;/
0
k; h

0; F
0
k;C

0
k; L

0g ¼ fGkn;Gkn; gn; dkndðx� x0Þ; 0; 0g ¼ bGkn; bGkn; ĝn ¼ 0; 0; dkndðx� x0Þ; 0
n o

¼ bbG kn;
bbGkn ¼ 0; ^̂gn; 0; 0; 0; dknIkdðx� x0Þ

� 

ð66Þ
in (64) and express the three field quantities as
unðxÞ ¼
Z

V
½F kðx0ÞGknðx� x0Þ þ Ckðx0ÞGknðx� x0Þ þ Lðx0Þgnðx� x0Þ�dx0;

/nðxÞ ¼
Z

V
½F kðx0ÞbGknðx� x0Þ þ Ckðx0ÞĜknðx� x0Þ�dx0;

hðxÞ ¼
Z

V
½ðF kðx0Þ bbG knðx� x0Þ þ Lðx0Þ^̂gnðx� x0ÞÞ=Inðx� x0Þ�dx0.

ð67Þ
Here, the quantities f t
i , lt

i and lt in Eq. (58) may be regarded as the fictitious body forces, body moments and
body force density. Now, substituting the definitions given by Eqs. (58) and (65) into Eq. (67) and integrat-
ing by parts with the assumption of vanishing boundary terms, we obtain
unðxÞ ¼ �
Z

V
½k0h

tGkn;k þ Aklije
t
ijGln;k þ Bklijc

t
ijGkn;l � v2jike

t
ijGkn þ a0h

tgn;kk � k1h
tgn � k0dije

t
ijgn�dx0;

/nðxÞ ¼ �
Z

V
½k0h

t bGkn;k þ Aklije
t
ij
bGln;k þ Bklijc

t
ij
bGkn;l � v2jike

t
ij
bGkn�dx0;

hðxÞ ¼ �
Z

V
½ðk0h

t bbG kn;k þ Aklije
t
ij
bbG ln;k þ a0h

t^̂gn;kk � k1h
t ^̂gn � k0dije

t
ij
^̂gnÞ=In�dx0.

ð68Þ
Eq. (68) express the displacement vector uk, the microrotation vector /k, and the microelongation scalar h
in terms of the Green�s functions. Now, strain, microrotation, microelongation, stress, couple stress and
other microquantities of a microstretch medium may be easily found by the use of the results given in
Eqs. (68), (3) and (2), respectively.
3.1. Elastic field due to an inclusion in a microstretch material

In this section, we consider an inclusion occupying a subdomain X in an infinite microelongated
medium. Now assuming the asymmetric eigenstrain e�ij, eigentorsion c�ij, and the microeigenstrain h* in
Eq. (54) are constants over the inclusion (Cheng and He, 1995, 1997), we write Eq. (68) as in the following
form:
unðxÞ ¼ uC
n ðxÞ þ InijðxÞe�ij þ J nijðxÞc�ij þ KnðxÞh�;

/nðxÞ ¼ bI nijðxÞe�ij þ bJ nijðxÞc�ij;

hðxÞ ¼ bbI ijðxÞe�ij þ
bbK ðxÞh�.

ð69Þ
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Here, the coefficients of eigenstrain, eigentorsion and microeigenstrain are
InijðxÞ ¼ �
v
2
ðdildjk � dikdjlÞ

Z
X
GC

kn;l dx0 � Alkij

Z
X
ðGkn;l � GC

kn;lÞdx0 þ v2jik

Z
X

Gkn dx0 þ k0dij

Z
X

gn dx0;

J nijðxÞ ¼ �Bklij

Z
X

Gkn;l dx0;

KnðxÞ ¼ �k0

Z
X
Gkn;k dx0 � a0

Z
X

gn;kk dx0 þ k1

Z
X

gn dx0;

bI nijðxÞ ¼ �Alkij

Z
X

bGkn;l dx0 þ v2jik

Z
X

bGkn dx0;

bJ nijðxÞ ¼ �Bklij

Z
X

bGkn;l dx0;

bbI ijðxÞ ¼ �Alkij

Z
X

bbG kn;l

In
dx0 þ k0dij

Z
X

^̂gn

In
dx0;

bbK ðxÞ ¼ �k0

Z
X

bbG kn;k

In
dx0 � a0

Z
X

^̂gn;kk

In
dx0 þ k1

Z
X

^̂gn

In
dx0

ð70Þ
and
uC
n ðxÞ ¼ IC

nijðxÞe�ij;

IC
nijðxÞ ¼ �ðkdijdkl þ ldikdjl þ ldildjkÞ

Z
X
GC

kn;l dx0.
ð71Þ
Using Eqs. (62) and (63) in (70) and (71) and after some mathematical manipulations, we arrive
InijðxÞ ¼ IP
nijðxÞ þ IE

nijðxÞ;

J nijðxÞ ¼ �
1

2l
c2nikM1;jkðxÞ þ b2njkM1;ikðxÞ
� �

þ 1

2l
c2nikM3;jkðx; h2Þ þ b2njkM3;ikðx; h2Þ
� �

;

KnðxÞ ¼ �2
k0k1

B0

M1;nðxÞ þ
a0k0 2k2

0 � ðkþ 2lÞk1

� �
B2

0

M3;kknðx; h1Þ þ
k1k0

B0

M3;nðx; h1Þ;

Î nijðxÞ ¼
1

4l
v2jikM1;knðxÞ � ð2lþ vÞ2njkM1;ikðxÞ � ð2l� vÞ2nikM1;jkðxÞ
� �

� 1

4l
ð2lþ vÞ2jikM3;knðx; h2Þ � ð2lþ vÞ2njkM3;ikðx; h2Þ � ð2l� vÞ2nikM3;jkðx; h2Þ
� �

þ 1

2
2jikM3;knðx; h3Þ þ

2lþ v

4lh2
2

2jinM3ðx; h2Þ;

Ĵ nijðxÞ ¼ �
cþ b

4l
M1;ijnðxÞ þ

2lþ v
4lv

adijM3;kknðx; h2Þ þ ðcþ bÞM3;ijnðx; h2Þ
� �

� 1

2v
adijM3;kknðx; h3Þ þ ðcþ bÞM3;ijnðx; h3Þ
� �

� 2lþ v

4lvh2
2

adijM3;nðx; h2Þ þ cdinM3;jðx; h2Þ þ bdjnM3;iðx; h2Þ
� �

;
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^̂I ijðxÞ ¼
2k0ðkþ lÞ

B0

dij þ
k0l
B0

M2;ijnðxÞ
M1;nðxÞ

þ 2k0B1l

B2
0

M1;ijnðxÞ
M1;nðxÞ

� kk0B1

B2
0

dij
M3;kknðx; h1Þ

M1;nðxÞ

� 2k0B1l

B2
0

M3;ijnðx; h1Þ
M1;nðxÞ

� k0ðkþ 2lÞ
B0

dij
M3;nðx; h1Þ

M1;nðxÞ
;

^̂KðxÞ ¼ k2
0 þ ðkþ 2lÞk1

B0

�
B1 2k2

0 � ðkþ 2lÞk1

� �
B2

0

M3;kknðx; h1Þ
M1;nðxÞ

� ðkþ 2lÞk1

B0

M3;nðx; h1Þ
M1;nðxÞ

; ð72Þ
where
IC
nijðxÞ ¼

kþ l
kþ 2l

M2;ijnðxÞ �
k

kþ 2l
dijM1;nðxÞ � dinM1;jðxÞ � djnM1;iðxÞ;

IP
nijðxÞ ¼ 2lBh2

2M1;ijnðxÞ þ
v
l

dinM1;jðxÞ � djnM1;iðxÞ
� �

� Bh2
2 kdijM3;kknðx; h2Þ þ 2lM3;ijnðx; h2Þ
� �

þ BkdijM3;nðx; h2Þ

þ B lþ v
2

� �
þ v

2l


 �
djnM3;iðx; h2Þ þ B l� v

2

� �
� v

2l


 �
dinM3;jðx; h2Þ;

IE
nijðxÞ ¼ �

2ðkþ lÞk2
0

ðkþ 2lÞB0

dijM1;nðxÞ �
k2

0

ðkþ 2lÞB0

lM2;ijnðxÞ þ
a0k

2
0

B2
0

kdijM3;kknðx; h1Þ

þ 2a0k
2
0

B2
0

lM3;ijnðx; h1Þ �
2a0k

2
0

B2
0

lM1;ijnðxÞ þ
k2

0

B0

dijM3;nðx; h1Þ;

ð73Þ
here
M3;kknðx; hÞ ¼
1

h2
M3;nðx; hÞ ð74Þ
and we define the following potential functions
M1ðxÞ ¼
1

4p

Z
X

1

r
dx0; M2ðxÞ ¼

1

4p

Z
X

r dx0; M3ðx; hÞ ¼
1

4p

Z
X

e�r=h

r
dx0. ð75Þ
As it is mentioned above, Eshelby tensor for an isotropic elastic body in classical elasticity are found by two
integrals which are the same of the first two integrals of Eq. (75) and they are given explicitly by Mura
(1982). Therefore, the problem of determining Eshelby tensors for a microstretch solid is basically con-
verted to the determination of third integral given by Eq. (75). The results for a spherical inclusion with
radius a is given in (Cheng and He, 1995) as:
M1ðxÞ ¼
1

4p

Z
X

1

r
dx0 ¼

� 1

6
ðx2 � 3a2Þ; x 2 X;

a3

3x
; x 2 R3 � X;

8><>:
M2ðxÞ ¼

1

4p

Z
X

r dx0 ¼
� 1

60
ðx4 � 10a2x2 � 15a4Þ; x 2 X;

a3

15
5xþ a2

x

� 	
; x 2 R3 � X;

8>><>>:
M3ðx; hÞ ¼

1

4p

Z
X

e�r=h

r
dx0 ¼

h2 � h2ðhþ aÞ sinh x=h
x

e�a=h; x 2 X;

h2 a cosh
a
h
� h sinh

a
h

� � e�x=h

x
; x 2 R3 � X.

8>><>>:

ð76Þ
Here, x = jxj. Using Eqs. (2), (69) and (71), we express the strain, microtorsion and microelongation in a
microstretch material as
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eklðxÞ ¼ KklijðxÞe�ij þ LklijðxÞc�ij þMklðxÞh�;
cklðxÞ ¼ K̂klijðxÞe�ij þ L̂klijðxÞc�ij;

hðxÞ ¼ ^̂KijðxÞe�ij þ
^̂MðxÞh�.

ð77Þ
Here,
KklijðxÞ ¼ IC
lij;kðxÞ þ Ilij;kðxÞ � 2klmÎmijðxÞ; LklijðxÞ ¼ J lij;kðxÞ � 2klmĴ mijðxÞ

MklðxÞ ¼ Kl;kðxÞ; K̂klijðxÞ ¼ Î kij;lðxÞ; L̂klijðxÞ ¼ Ĵ kij;lðxÞ;
^̂KijðxÞ ¼ ^̂I ijðxÞ; ^̂MðxÞ ¼ ^̂KðxÞ.

ð78Þ
These tensors are the modified version of the classical Eshelby tensors for microstretch materials includ-
ing spherical inclusions. They are not homogeneous over the inclusion even for spherical case, unlike the
classical theory of elasticity.

We may obtain the solutions due to microelongation, micropolar and classical cases as the special cases
of the microstretch theory. To arrive the solutions of microelongation, the micropolar constitutive coeffi-
cients are assumed absent. In the same way, to find the solutions for micropolar theory, the constitutive
coefficients due to microelongation are taken zero. To get the result for the classical theory both quantities,
due to microelongation and micropolar cases are assumed absent. That is,
/k ¼ h ¼ 0; v ¼ a ¼ b ¼ c ¼ a0 ¼ k0 ¼ k1 ¼ 0 ð79Þ

and we have only
KklijðxÞ ¼ IC
lij;kðxÞ ð80Þ
and all the other Eshelby tensors are zero.
Eshelby tensor Sijkl in classical theory of elasticity is defined as:
eij ¼ Sijkle
�
kl; ð81Þ
to arrive this result as a limit case of the present problem, we write from Eq. (77)1
1

2
ekl þ elkð Þ ¼ 1

2
IC

lij;kðxÞ þ IC
kij;lðxÞ

h i 1

2
e�ij þ e�ji

� �
. ð82Þ
Here IC
lij;kðxÞ is symmetric with respect to the indices i and j. On the other hand ekl is a symmetric tensor in

classical elasticity. Thus, the comparison of Eqs. (81) and (82) gives
Sklij ¼
1

2
IC

lji;kðxÞ þ IC
kji;lðxÞ

h i
. ð83Þ
For a spherical inclusion, Eq. (83) takes the following form:
Sklij ¼
5m� 1

15ð1� mÞ dijdkl þ
4� 5m

15ð1� mÞ ðdikdjl þ dildjkÞ. ð84Þ
This result is the same of the well-known Eshelby tensor for a spherical inclusion in the classical theory of
elasticity (Mura, 1982).
4. Conclusions

In this work, we have obtained the Eshelby tensors for isotropic homogeneous microstretch materials with
a spherical inclusion. It is also shown that the solutions corresponding to microelongation, micropolar and
classical cases are all the special cases of the microstretch theory. Using the obtained Eshelby tensors, the
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Mori–Tanaka method can be extended to the microstretch medium which we shall give the details in a further
work and determine the overall material moduli of damaged materials modeled as a microstretch continuum.
Appendix A

A.1. Solutions for microelongated medium

The general equations for the microelongated elastic fields and the fundamental equations are obtained
by Kiris and Inan (2005). Then the Eshelby tensors are found for the spherical inclusion in microelongated
medium (Kiris and Inan, 2005).

As it is known, microelongation theory is defined as a special case of microstretch theory which ignores
the effects of microrotations. The local balance of momentum and moment of momentum at a point of a
deformed microelongated medium are (Kiris and Inan, 2005)
tkl;k þ fl ¼ 0;

mk;k þ t � sþ l ¼ 0.
ðA:1Þ
Geometrical relations and the linearized constitutive equations are summarized as in the following:
ekl ¼ ul;k; ck ¼ 3h;k; ðA:2Þ

tkl ¼ As
klhþ As

mklh;m þ Aklmnemn;

s� t ¼ Cshþ Cs
kh;k þ As

klekl;

mk ¼ Cs
khþ Cs

klh;l þ As
klmelm.

ðA:3Þ
Here again fk is the body force, l is the microelongation force density, uk is the displacement vector, h is the
microelongation, tkl and skl are stress tensors, mk is microelongation vector and t = tkk, s = skk.

Constitutive coefficients of (A.3) for the linearized isotropic microelongated medium are
As
kl ¼ k0dkl; As

klm ¼ 0; Cs ¼ k1; Cs
k ¼ 0; Cs

kl ¼ a0dkl;

Aklmn ¼ kdkldmn þ ldkmdln þ ldkndlm; Cklmn ¼ 0.
ðA:4Þ
To obtain the governing equations for microelongated medium we substitute Eqs. (A.2)–(A.4) into Eq.
(A.1). The result is
k0h;l þ ðkþ lÞuk;kl þ l ul;kk þ fl ¼ 0;

a0h;kk
� k1h� k0uk;k þ l ¼ 0.

ðA:5Þ
Here k and l are Lamé constants, a0, k0 andk1 are new constitutive coefficients due to microelongation and
they are given in Eq. (5).

The results of the Galerkin�s representation for microelongated medium are given by Kiris and Inan
(2005) and the fundamental solution for infinite, elastic microelongated medium are
u ¼ B0 þ k1l
8plB0

q

r

� �
þ B0 � k1l

8plB0

ðq � rÞr
r3

� 	
þ a0

4pB0

q

r3

� �
� 3a0

4pB0

ðq � rÞr
r5

� 	
þ a0 � k1h2

1

4pB0

r�r� q

r
e�r=h1

� �
þ a0 � k1h2

1

4pB0h2
1

q

r
e�r=h1

� �
þ k1h2

1

4pB0

r�r� q

r

� �
;

h ¼ k0

4pB0

q � r
r3

� �
þ k0

4pB0

r � q

r
e�r=h1

� �
.

ðA:6Þ
Here, q is the concentrated force acting at the origin of the coordinate system.
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Solutions for the second case which we assume rl ¼ �l and �l ¼ �pdðx1; x2; x3Þ acting at the origin of the
coordinate system are found as (Kiris and Inan, 2005)
u ¼ k0

8pB0

�p

r
� ð

�p � rÞ�r
r3


 �
� k0

4pB0

�p

r
e�r=h1

� 	
þ k0h2

1

4p;B0

r�r�
�p

r
ð1� e�r=h1Þ

� 	
;

h ¼ �ðkþ 2lÞ
4pB0

r �
�p

r
ð1� e�r=h1Þ

� 	
.

ðA:7Þ
A.2. Solutions for micropolar medium

As it is known, micropolar medium is defined by Eringen with the assumption that the material particles
are rigid and can only rotate independently in addition to the bulk deformation (Eringen, 1999). General
equations of micropolar medium are given by Eringen (1999) and the fundamental solutions are obtained
by Sandru (1966). Then Cheng and He (1995) found the Eshelby tensors for a spherical inclusion. The re-
sults of these two papers are given in the followings.

The equations of equilibrium for micropolar medium (Eringen, 1999):
tkl;k þ fl ¼ 0;

mkl;k þ 2lmntmn þ ll ¼ 0;
ðA:8Þ
Geometrical relations:
ekl ¼ ul;k þ 2lkm/m; ckl ¼ /k;l ðA:9Þ
and linear constitutive equations:
tkl ¼ Aklmnemn þ Cklmncmn;

mkl ¼ Cmnlkemn þ Blkmncmn.
ðA:10Þ
Here lk, /k and mkl are the body couple, microrotation vector and the couple stress respectively and the
constitutive coefficients are
Aklmn ¼ kdkldmn þ lþ v
2

� �
dkmdln þ l� v

2

� �
dkndlm; Cklmn ¼ 0;

Bklmn ¼ adkldmn þ bdkndlm þ cdkmdln.
ðA:11Þ
Substituting Eqs. (A.11) and (A.9) into Eq. (A.10) and then into Eq. (A.8), we obtain
lþ v
2

� �
ul;kk þ kþ l� v

2

� �
uk;kl þ v2lkm/m;k þ fl ¼ 0;

c/l;kk þ ðaþ bÞ/k;kl � 2v/l þ v2lkmum;k þ ll ¼ 0.
ðA:12Þ
Here a, b, c and v are new constitutive coefficients for the micropolar medium.
The results of the Galerkin�s approach for micropolar medium are given by Sandru (1966) for two types

of loadings. In the first case, the concentrated force f = qd(x1,x2,x3) is assumed acting at the origin of the
coordinate system. The solutions for this case are
u ¼ 1

16plð1� mÞ ð3� 4mÞ q

r

� �
þ q � rð Þr

r3

� 	
 �
þ c

16pl2
r�r� q

r
ðe�r=h2 � 1Þ

h i
;

/ ¼ 1

8pl
r� q

r
ð1� e�r=h2Þ

h i
.

ðA:13Þ
Here m is Poisson�s ratio.
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For the second loading, f is assumed absent, and l = pd(x1,x2,x3) is acting at the origin. Then the solu-
tions are
u ¼ 1

8pl
r� p

r
ð1� e�r=h2Þ

h i
;

/ ¼ rK�0 þ
2lþ v
16plv

r�r� p

r
1� e�r=h2
� �h i

.

ðA:14Þ
Here 
 �

K�0 ¼

1

8pv
p � r 1

r
ðe�r=h3�1Þ . ðA:15Þ
Appendix B

B.1. Eshelby tensors for microelongated media

� �
eklðxÞ ¼ KklijðxÞeij þ LklðxÞ/ ;

/ðxÞ ¼ K̂ijðxÞe�ij þ L̂ðxÞ/�,
ðB:1Þ

KklijðxÞ ¼ IC
lji;kðxÞ þ Ilji;kðxÞ; LklðxÞ ¼ J l;kðxÞ;

K̂ijðxÞ ¼ Î jiðxÞ; L̂ðxÞ ¼ ĴðxÞ;
ðB:2Þ

InjiðxÞ ¼ �
2ðkþ lÞk2

0

ðkþ 2lÞB0

dijM1;nðxÞ þ
k2

0

B0

dijM3;nðx; h1Þ �
k2

0

ðkþ 2lÞB0

lM2;ijnðxÞ

� 2a0k
2
0

B2
0

lM1;ijnðxÞ þ
a0k

2
0

B2
0

kdijM3;kknðx; h1Þ þ
2a0k

2
0

B2
0

lM3;ijnðx; h1Þ;

J nðxÞ ¼ �2
k0k1

B0

M1;nðxÞ þ
a0k0 2k2

0 � k1ðkþ 2lÞ
� �

B2
0

M3;kknðx; h1Þ þ
k1k0

B0

M3;nðx; h1Þ;

Î jiðxÞ ¼ 2
k0ðkþ lÞ

B0

dij þ
k0l
B0

M2;ijnðxÞ þ
2k0B1l

B2
0

M1;ijnðxÞ �
kk0B1

B2
0

dijM3;kknðx; h1Þ



� 2k0B1l

B2
0

M3;ijnðx; h1Þ �
k0ðkþ 2lÞ

B0

dijM3;nðx; h1Þ
�

1

M1;nðxÞ
;

ĴðxÞ ¼ k2
0 þ k1ðkþ lÞ

B0

�
B1 2k2

0 � k1ðkþ 2lÞ
� �

B2
0

M3;kknðx; h1Þ þ
k1ðkþ 2lÞ

B0

M3;nðx; h1Þ
" #

1

M1;nðxÞ
;

IC
njiðxÞ ¼

kþ l
kþ 2l

M2;ijnðxÞ �
k

kþ 2l
dijM1;nðxÞ � dinM1;jðxÞ � djnM1;iðxÞ.

ðB:3Þ
B.2. Eshelby tensors for micropolar media

� �
emnðxÞ ¼ KmnjiðxÞeji þ LmnjiðxÞcji;

cmnðxÞ ¼ K̂mnjiðxÞe�ji þ L̂mnjiðxÞc�ji,
ðB:4Þ
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KmnjiðxÞ ¼ IC
nji;mðxÞ þ Inji;mðxÞ � 2lmnÎ ljiðxÞ; K̂mnjiðxÞ ¼ Î nji;mðxÞ;

LmnjiðxÞ ¼ J nji;mðxÞ � 2lmnĴ ljiðxÞ; L̂mnjiðxÞ ¼ Ĵ nji;mðxÞ,
ðB:5Þ

InjiðxÞ ¼ 2Blh2
2M1;ijnðxÞ þ

v
l

djnM1;iðxÞ � dinM1;jðxÞ
� �

� Bh2
2 kdijM3;kknðx; h2Þ þ 2lM3;ijnðx; h2Þ
� �

þ BkdijM3;nðx; h2Þ þ B lþ v
2

� �
þ v

2l


 �
dinM3;jðx; h2Þ þ B l� v

2

� �
� v

2l


 �
djnM3;iðx; h2Þ;

J njiðxÞ ¼ �
1

2l
c2nikM1;jkðxÞ þ b2njkM1;ikðxÞ
� �

þ 1

2l
c2nikM3;jkðx; h2Þ þ b2njkM3;ikðx; h2Þ
� �

;

Î njiðxÞ ¼
1

4l
v2ijkM1;knðxÞ � ð2lþ vÞ2nikM1;jkðxÞ � ð2l� vÞ2njkM1;ikðxÞ
� �

� 1

4l
ð2lþ vÞ2ijkM3;knðx; h2Þ � ð2lþ vÞ2nikM3;jkðx; h2Þ � ð2l� vÞ2njkM3;ikðx; h2Þ
� �

þ 1

2
2ijkM3;knðx; h3Þ þ

2lþ v

4lh2
2

2ijnM3ðx; h2Þ;

Ĵ njiðxÞ ¼ �
cþ b

4l
M1;ijnðxÞ þ

2lþ v
4lv

adijM3;kknðx; h2Þ þ ðcþ bÞM3;ijnðx; h2Þ
� �

� 1

2v
adijM3;kknðx; h3Þ þ ðcþ bÞM3;ijnðx; h3Þ
� �

� 2lþ v

4lvh2
2

½adijM3;nðx; h2Þ þ cdinM3;jðx; h2Þ

þ bdjnM3;iðx; h2Þ�;

IC
njiðxÞ ¼

kþ l
kþ 2l

M2;ijnðxÞ �
k

kþ 2l
dijM1;nðxÞ � dinM1;jðxÞ � djnM1;iðxÞ.

ðB:6Þ
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Hsieh, R.K.T., Vörös, G., Kovács, I., 1980. Physica B 101, 201–208.
Inan, E., 1990. Elastic waves in damaged material. in: Proc. of Fourth ICOVP-99, A, Calcutta, India, pp. 149–160.
Kiris, A., Inan, E., 2005. Int. J. Eng. Sci. 43, 49–58.
Mori, T., Tanaka, K., 1973. Acta Metall. 21, 571–574.
Mura, T., 1982. Micromechanics of Defects in Solids. Kluwer, The Netherlands.
Sandru, N., 1966. Int. J. Eng. Sci. 4, 81–94.
Sharma, P., Dasgupta, A., 2002. Phys. Rev. B 66, 224110-1–224110-10.
Suhubi, E.S., Eringen, A.C., 1964. Int. J. Eng. Sci. 2, 389–404.


	Eshelby tensors for a spherical inclusion in microstretch elastic fields
	Introduction
	Fundamental solutions
	Eshelby tensors of microstretch medium
	Elastic field due to an inclusion in a microstretch material

	Conclusions
	Appendix A
	Solutions for microelongated medium
	Solutions for micropolar medium

	Appendix B
	Eshelby tensors for microelongated media
	Eshelby tensors for micropolar media

	References


